
Continuous, Trustless, and Fair: Changing
Priorities in Services Computing

Stefan Tai

TU Berlin, Germany

Abstract. Services computing research and practice traditionally has
focused on the objectives of business alignment, software systems inter-
operability and on leveraging the Web as a compute platform. Corre-
sponding technology solution stacks and architectural styles have been
promoted. Today, and probably for the next decade to come, different
objectives are replacing these original ones and, correspondingly, differ-
ent solution stacks and architectural styles are emerging. Most notably,
challenges such as frequent delivery of service systems, decentralization
and business disintermediation, and ”socially aligned” service systems
lead us to continuous computing, trustless computing, and fair comput-
ing – three major trends that we expect to become the driving force
behind next-generation service systems. In this paper, we discuss these
trends and identify major research directions to deliver on these changing
priorities.

Keywords: continuous computing, trustless computing, fair computing

1 Introduction

After 15+ years of research and practice the services computing community is un-
dergoing a fundamental change: newer technology is replacing older technology,
research efforts of the past without any significant impact to-date are discontin-
ued, and new research challenges are appearing. In this invited paper, we argue
that the primary objectives of services computing are changing – from business
alignment, software interoperability and web computing initially to continuous
computing, trustless computing, and fair computing today and tomorrow – and
that the community consequently must part from older themes and instead focus
on addressing current and future priorities.

2 Services computing – A brief historical sketch

In the early 2000s, a time where XML was popular and interoperability of het-
erogeneous software components and systems was a priority objective, WS-*
was born. SOAP and WSDL, along with the manifold WS-* specifications ad-
dressing all kinds of enterprise concerns, were promoted as industry standards
pushed by large corporations. Correspondingly, the services computing research



II

community explored service systems from a variety of angles related to the pri-
mary objectives of software interoperability and web computing, driven by the
idea of establishing a rich computing model based on the services abstraction to
well-align IT services and business services. In the mid- and late 2000s, themes
including service discovery, (business process-driven) service composition, and
service semantics were on the research agenda, with WS-* being the natural
choice for proof-of-concept and implementation.

At around the same time, REST emerged as the more lightweight computing
model and alternative to WS-*. REST is an architectural style using ubiquitous,
foundational web technology like HTTP. REST thereby defines architectural
constraints but, unlike WS-*, does not introduce new technology standards.
Less motivated by interoperability concerns especially of large IT corporations,
REST focuses on leveraging the Web and its manifold resources for purposes of
services computing.

Today, especially from a research perspective, WS-* is mostly history and
best remembered as a set of XML specifications, which encode proven principles
of enterprise computing, but which also tend to (invite to) introduce compu-
tational overhead. While SOAP and WSDL are still in use in many enterprise
systems, the majority of the WS-*-specifications did not have any significant
practical impact and – due to their focus on standardizing interoperability con-
cerns – need no longer be subject of current or future research.

REST, on the other hand, today is by far the more popular services comput-
ing model. A large body of best practices is available, making REST a commonly
applied and principally well-understood computing model. Few if any critical
REST-specific research challenges are left open.

A third, more recent trend in services computing are microservices. Driven by
the need to ease change management, microservices must be seen in the context
of DevOps-based organizations: they directly link the software service artifact
to the development and operations team that builds and manages the artifact –
an aspect that both WS-* and REST have ignored – and emphasize communi-
cation between different teams by means of APIs. Like REST, microservices are
not about standards, but about architecture. Unlike REST, microservices pro-
mote an architectural decomposition into individual business functions, where
each business function may be a full vertical cut across multiple system lay-
ers including the data and resource management layer. Microservices thereby
loosely couple the business functions, but tightly couple business logic and data
management.

Yet another difference lies in the deployment and runtime environments that
the three services computing models propose: WS-* advocates a traditional en-
terprise middleware environment, REST relies on the web itself, and microser-
vices lend themselves naturally to cloud systems, especially deployments using
container technology. Microservices can be seen as a native cloud-based services
computing model, whereas WS-* and REST describe models that were originally
developed and proposed prior to the cloud-era.



III

3 Some lessons learned

WS-*, REST, and microservices describe three different services computing mod-
els. WS-* is mostly history, REST is current engineering practice, and microser-
vices, along with related concepts of lambda-services and serverless architectures,
are gaining momentum. Before we discuss future research directions, we can con-
clude:

1. Services computing fundamentally is about architecture – ”making non-
trivial decisions that are documented and are based on a clear rationale” [4].
Such decision-making is influenced by the services computing model chosen
and the corresponding objectives associated with the model. The architec-
tural principles are what drives and distinguishes service systems.

2. Architecture does not need complex and rich technology standards; the most
basic and simple standards suffice. The engineering, the proposition and the
use of rich standards, correspondingly, is not critical to service architectures
and need not be on the services research agenda.

3. Architectural constraints change as the service engineering culture and tech-
nology evolves. With WS-*, interoperability was a priority objective. REST
put web principles to the front. Microservices emphasize ease of change man-
agement. With different priorities in mind, different architectural solutions
have been and will continue to be born.

4. Future services computing models will natively reflect advancements in com-
puting infrastructure.

4 Research Ahead: Changing Priorities

We observe three major trends in services and cloud computing, which each
replace former thinking and former priorities with newer thinking and newer
priorities: continuous computing, trustless computing, and fair computing. These
three trends, individually and in combination, reflect changing needs: frequent,
i.e. almost ’continuous’ delivery of systems, disintermediation of businesses and
decentralized applications, and ”social alignment” beyond ”business alignment”.

4.1 Continuous computing

Continuous computing emphasizes the need to continuously, i.e., frequently, de-
liver a system. Continuity requires new engineering processes for delivery and a
high degree of automation with appropriate tooling, along with organizational
models that support these processes. In practice, ”reducing the time between
committing a change to a system and to place the change into normal pro-
duction, while ensuring high quality” [1] – multiple times a day – is a critical
requirement. Architectural abstractions in support of an effective change man-
agement consequently are a top priority. We can identify at least the following
main research challenges:



IV

– Engineering microservices-based architectures. Microservices, born out of
DevOps-based organizations with continuous delivery pipelines, and related
concepts of lambda services, describe different building blocks for service-
oriented architectures than the traditional WS-* or REST services. Their
tight integration with organizational and delivery aspects makes them a nat-
ural candidate to support continuous computing. An integrated approach to
the design and use of microservices, their management in cloud-based de-
ployment and runtime environments, and their role in the organizational
context and continuous delivery processes is required.

– Cloud service benchmarking. Frequent changes and continuous delivery re-
quire evidence-based quality control and management. With cloud service
benchmarking, we refer to recurring quality-oriented experimentation and
analysis of services deployed in cloud environments, for the purpose of dis-
covering quality insights otherwise unknown [2]. Cloud service benchmark-
ing, in addition to functional testing and monitoring of production systems,
is critical to understanding service systems and to both justify and guide
system changes in continuous computing.

4.2 Trustless computing

In the past years, much attention was paid to trust in computing and trust
models for services and cloud systems. This was largely driven by fear or risk
aversion when outsourcing computing and data to external service and cloud
providers. Trustful computing then suggested architectures that require com-
plex security protocols, intermediation and, typically, some central authority to
manage and/or warrant ’trust’.

Trustless computing deliberately breaks with such thinking and promotes
decentralized solutions for the correct execution of ’transactions’. Unlike trans-
actions as known from database systems, in trustless computing, no transac-
tion manager and no concurrency and coordination control exist, but symmetric
shared responsibilities, including transaction validation, by any node partici-
pating in the network. Peer-to-peer systems employing decentralized consensus
protocols remove centralized control and allow for new forms of business disin-
termediation. Note that the term ’trustless’ does not imply a lack of trust, but
similar to the terms ’stateless’ or ’serverless’ in services computing, a change in
perspective in how trust (or state, or servers) is managed.

To this end, one major research challenge stands out: Blockchain-based ap-
plication architectures. Blockchains are decentralized, immutable ledgers for ver-
ifying and recording ’transactions’. Originally proposed along with the bitcoin
cryptocurrency [5], blockchains today are the prime candidate solution for trust-
less computing in any application domain where trade occurs, and whenever trust
is to be ensured through peers, but not by some central authority. Blockchains
currently experience intensive debate and hype. We agree that there is a huge
potential associated with blockchains to disruptively change entire application
domains, but argue that a careful selection of application domains and much



V

more experimental research is needed. Blockchain-based applications are inher-
ently distributed systems, and a distributed systems perspective is fundamental
to building applications using blockchains. Solutions to deal with the typical
fallacies of distributed computing are needed.

4.3 Fair computing

Third, we observe that services computing no longer is driven by business think-
ing alone, but increasingly also by aspects of social awareness and social re-
sponsibility. For example, complex challenges such as privacy go well beyond
business concerns but must focus on the human individual or group as the main
stakeholder. We refer to this trend as fair computing, deliberately calling out for
a modern computer science notion of fairness that may draw from fairness as
studied in other scientific communities, especially law and economics. Research
in fair computing demands at first two strands:

– Fair Information Practices. Different fair information practice principles
have been around for decades, including those published by the US Federal
Trade Commission [3]. These may serve as a first step and as general guide-
lines for fair computing in today’s and tomorrow’s service systems – covering
aspects of transparency, choice and consent, and information review, correc-
tion and protection. Nevertheless, we expect refinements to be necessary as
digitization continues to transform every aspect of life with unprecedented
speed and impact. Privacy is more a ”social alignment” challenge, comple-
menting the general ”business alignment” objective that services computing
traditionally has focused on.

– Trade-off management. Dealing with complex challenges such as privacy in-
herently induces dealing with conflicting objectives within such challenges.
Typical trade-offs relate to ’anonymity versus accuracy’ or, from a dis-
tributed systems perspective, ’(desired) security (levels) versus (acceptable)
performance (impact)’. In addition, ’fairness’ itself is often regarded to be
in a trade-off relationship with ’efficiency’, typically, in the context of re-
source allocation problems. Balancing and overcoming trade-offs at different
levels of abstraction is hardly possible in a generic way, but typically re-
quires system/application-specific exploration that is evidence-based using
quantifiable objectives and corresponding benchmarking methods.

5 Next steps

The three trends of continuous computing, trustless computing, and fair com-
puting described above share significant commonalities. First, core principles of
peer-to-peer computing are prominent in all three trends. Second, all three trends
are potentially highly disruptive in nature, replacing older technology stacks and
former architectural thinking with different technology stacks and newer think-
ing. Third, they all build on a notion of a ’distributed service’, where each service



VI

is tightly associated with critical, non-technical responsibilities – organizational
aspects in continuous computing, independent validation in trustless computing,
and compliance to fair practice principles in fair computing.

We expect architectural styles that define trend-specific sets of constraints to
continue to emerge, and so will innovations and technology in support of all three
trends. We do not expect a need to devise complex standards and standardization
activities for such architectures, neither protocols or infrastructure, as long as
fundamental architectural constraints and governing principles are agreed upon.

The services computing research community must re-focus by putting tra-
ditional and ’solved’ (or ’failed’) research topics aside, and instead focus on
current and future priorities that are at the core of next generation service sys-
tems. Continuity of service delivery, decentralization, and fairness should move
into the center of our attention.

References

1. Bass, L.J., Weber, I.M., Zhu, L.: DevOps - A Software Architect’s Perspective.
Addison-Wesley (2015)

2. Bermbach, D., Wittern, J.E., Tai, S.: Cloud service benchmarking. Springer (2017,
forthcoming)

3. Federal Trade Commission: Privacy online: Fair information practices in the elec-
tronic marketplace, https://www.ftc.gov/reports/privacy-online-fair-information-
practices-electronic-marketplace-federal-trade-commission (2000)

4. Hohpe, G.: 37 Things One Architect Knows About IT Transformation. Leanpub
(2016)

5. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf (2008)


